16 research outputs found

    Domain Adaptation for Novel Imaging Modalities with Application to Prostate MRI

    Get PDF
    The need for training data can impede the adoption of novel imaging modalities for deep learning-based medical image analysis. Domain adaptation can mitigate this problem by exploiting training samples from an existing, densely-annotated source domain within a novel, sparsely-annotated target domain, by bridging the differences between the two domains. In this thesis we present methods for adapting between diffusion-weighed (DW)-MRI data from multiparametric (mp)-MRI acquisitions and VERDICT (Vascular, Extracellular and Restricted Diffusion for Cytometry in Tumors) MRI, a richer DW-MRI technique involving an optimized acquisition protocol for cancer characterization. We also show that the proposed methods are general and their applicability extends beyond medical imaging. First, we propose a semi-supervised domain adaptation method for prostate lesion segmentation on VERDICT MRI. Our approach relies on stochastic generative modelling to translate across two heterogeneous domains at pixel-space and exploits the inherent uncertainty in the cross-domain mapping to generate multiple outputs conditioned on a single input. We further extend this approach to the unsupervised scenario where there is no labeled data for the target domain. We rely on stochastic generative modelling to translate across the two domains at pixel space and introduce two loss functions that promote semantic consistency. Finally we demonstrate that the proposed approaches extend beyond medical image analysis and focus on unsupervised domain adaptation for semantic segmentation of urban scenes. We show that relying on stochastic generative modelling allows us to train more accurate target networks and achieve state-of-the-art performance on two challenging semantic segmentation benchmarks

    Beyond deterministic translation for unsupervised domain adaptation

    Get PDF

    Joint estimation of relaxation and diffusion tissue parameters for prostate cancer with relaxation-VERDICT MRI

    Get PDF
    This work presents a biophysical model of diffusion and relaxation MRI for prostate called relaxation vascular, extracellular and restricted diffusion for cytometry in tumours (rVERDICT). The model includes compartment-specific relaxation effects providing T1/T2 estimates and microstructural parameters unbiased by relaxation properties of the tissue. 44 men with suspected prostate cancer (PCa) underwent multiparametric MRI (mp-MRI) and VERDICT-MRI followed by targeted biopsy. We estimate joint diffusion and relaxation prostate tissue parameters with rVERDICT using deep neural networks for fast fitting. We tested the feasibility of rVERDICT estimates for Gleason grade discrimination and compared with classic VERDICT and the apparent diffusion coefficient (ADC) from mp-MRI. The rVERDICT intracellular volume fraction fic discriminated between Gleason 3 + 3 and 3 + 4 (p = 0.003) and Gleason 3 + 4 and ≥ 4 + 3 (p = 0.040), outperforming classic VERDICT and the ADC from mp-MRI. To evaluate the relaxation estimates we compare against independent multi-TE acquisitions, showing that the rVERDICT T2 values are not significantly different from those estimated with the independent multi-TE acquisition (p > 0.05). Also, rVERDICT parameters exhibited high repeatability when rescanning five patients (R2 = 0.79–0.98; CV = 1–7%; ICC = 92–98%). The rVERDICT model allows for accurate, fast and repeatable estimation of diffusion and relaxation properties of PCa sensitive enough to discriminate Gleason grades 3 + 3, 3 + 4 and ≥ 4 + 3

    Joint estimation of relaxation and diffusion tissue parameters for prostate cancer with relaxation-VERDICT MRI

    Get PDF
    This work presents a biophysical model of diffusion and relaxation MRI for prostate called relaxation vascular, extracellular and restricted diffusion for cytometry in tumours (rVERDICT). The model includes compartment-specific relaxation effects providing T1/T2 estimates and microstructural parameters unbiased by relaxation properties of the tissue. 44 men with suspected prostate cancer (PCa) underwent multiparametric MRI (mp-MRI) and VERDICT-MRI followed by targeted biopsy. We estimate joint diffusion and relaxation prostate tissue parameters with rVERDICT using deep neural networks for fast fitting. We tested the feasibility of rVERDICT estimates for Gleason grade discrimination and compared with classic VERDICT and the apparent diffusion coefficient (ADC) from mp-MRI. The rVERDICT intracellular volume fraction fic discriminated between Gleason 3 + 3 and 3 + 4 (p = 0.003) and Gleason 3 + 4 and ≥ 4 + 3 (p = 0.040), outperforming classic VERDICT and the ADC from mp-MRI. To evaluate the relaxation estimates we compare against independent multi-TE acquisitions, showing that the rVERDICT T2 values are not significantly different from those estimated with the independent multi-TE acquisition (p > 0.05). Also, rVERDICT parameters exhibited high repeatability when rescanning five patients (R2 = 0.79–0.98; CV = 1–7%; ICC = 92–98%). The rVERDICT model allows for accurate, fast and repeatable estimation of diffusion and relaxation properties of PCa sensitive enough to discriminate Gleason grades 3 + 3, 3 + 4 and ≥ 4 + 3

    Spatial Filter Feature Extraction Methods for P300 BCI Speller: A Comparison

    No full text

    Data classification and mapping in optical dynamic contrast-enhanced imaging of cervical neoplasia.

    No full text
    Μη διαθέσιμη περίληψηNot available summarizatio

    Joint estimation of relaxation and diffusion tissue parameters for prostate cancer grading with relaxation-VERDICT MRI

    No full text
    Purpose The non-invasive VERDICT MRI technique has shown promising results in clinical settings discriminating normal from malignant prostate cancer (PCa) tissue and Gleason grade 3+3 from 3+4. However, VERDICT currently doesn’t account for the inherent relaxation properties of the tissue, whose quantification could add complementary information and enhance its diagnostic power. The aim of this work is to introduce relaxation-VERDICT (rVERDICT) for prostate, a model for the joint estimation of diffusion and relaxation parameters from a VERDICT MRI acquisition; and to evaluate its repeatability and diagnostic utility for differentiating Gleason grades. Methods 72 men were recruited and underwent multiparametric MRI (mp-MRI) and VERDICT MRI. Deep neural network was used for ultra-fast fitting of the rVERDICT parameters. 44 men underwent targeted biopsy, which enabled assessment of rVERDICT parameters in differentiating Gleason grades measured with accuracy, F1-score and Cohen’s kappa of a convolutional neural network classifier. To assess repeatability, five men were imaged twice. Results the rVERDICT intracellular volume fraction fic discriminated between 5-class Gleason grades with {accuracy,F1-score,kappa}={8,7,3} percentage points higher than classic VERDICT, and {12,13,24} percentage points higher than the ADC from mp-MRI. Repeatability of rVERDICT parameters was high (R2=0.74–0.99, CV=1%–10%, ICC=78%-98%). T2 values estimated with rVERDICT were not significantly different from those estimated with an independent multi-TE acquisition (p>0.05). The deep neural network fitting provided ultra-fast (∼25x faster than classic VERDICT) and stable fitting of all the rVERDICT parameters
    corecore